The Niemann-Pick C1 protein in recycling endosomes of presynaptic nerve terminals.

نویسندگان

  • Barbara Karten
  • Robert B Campenot
  • Dennis E Vance
  • Jean E Vance
چکیده

Niemann-Pick type C (NPC) disease is a fatal, neurodegenerative disorder caused in 95% of cases by loss of function of NPC1, a ubiquitous endosomal transmembrane protein. A biochemical hallmark of NPC deficiency is cholesterol accumulation in the endocytic pathway. Although cholesterol trafficking defects are observed in all cell types, neurons are the most vulnerable to NPC1 deficiency, suggesting a specialized function for NPC1 in neurons. We investigated the subcellular localization of NPC1 in neurons to gain insight into the mechanism of action of NPC1 in neuronal metabolism. We show that NPC1 is abundant in axons of sympathetic neurons and is present in recycling endosomes in presynaptic nerve terminals. NPC1 deficiency causes morphological and biochemical changes in the presynaptic nerve terminal. Synaptic vesicles from Npc1(-/-) mice have normal cholesterol content but altered protein composition. We propose that NPC1 plays a previously unrecognized role in the presynaptic nerve terminal and that NPC1 deficiency at this site might contribute to the progressive neurological impairment in NPC disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease

Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...

متن کامل

Lipid dynamics in neurons.

Compared with other organs, the brain is highly enriched in cholesterol. Essentially all cholesterol in the brain is synthesized within the brain; the blood-brain barrier prevents the import of plasma lipoproteins into the brain. Consequently, the brain operates an independent lipoprotein transport system in which glial cells produce ApoE (apolipoprotein E)-containing lipoproteins that are thou...

متن کامل

Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts.

Exit of recycling cholesterol from late endosomes is defective in Niemann-Pick C1 (NPC1) and Niemann-Pick C2 (NPC2) diseases. The traffic route of the recycling proteoglycan glypican-1 (Gpc-1) may also involve late endosomes and could thus be affected in these diseases. During recycling through intracellular compartments, the heparan sulfate (HS) side chains of Gpc-1 are deaminatively degraded ...

متن کامل

Depletion of rafts in late endocytic membranes is controlled by NPC1-dependent recycling of cholesterol to the plasma membrane.

In mammalian cells, cholesterol is thought to associate with sphingolipids to form lateral membrane domains termed rafts. Increasing evidence suggests that rafts regulate protein interactions, for example, during signalling, intracellular transport and host-pathogen interactions. Rafts are present in cholesterol-sphingolipid-enriched membranes, including early and recycling endosomes, but wheth...

متن کامل

Mutation in EGFP domain of LDL receptor-related protein 6 impairs cellular LDL clearance.

Mutation in the EGFP domain of LDL receptor-related protein 6 (LRP6(R611C)) is associated with hypercholesterolemia and early-onset atherosclerosis, but the mechanism by which it causes disease is not known. Cholesterol uptake was examined in cells from LRP6(+/-) mice and LRP6(R611C) mutation carriers. Splenic B cells of LRP6(+/-) mice have significantly lower LRP6 expression and low-density li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 47 3  شماره 

صفحات  -

تاریخ انتشار 2006